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ABSTRACT 
In frst-person shooters (FPS), professional players (a.k.a., Gosu) 
outperform amateur players. The secrets behind the performance of 
professional FPS players have been debated in online communities 
with many conjectures; however, attempts of scientifc verifcation 
have been limited. We addressed this conundrum through a data-
collection study of the gameplay of eight professional and eight 
amateur players in the commercial FPS Counter-Strike: Global 
Ofensive. The collected data cover behavioral data from six sensors 
(motion capture, eye tracker, mouse, keyboard, electromyography 
armband, and pulse sensor) and in-game data (player data and 
event logs). We examined conjectures in four categories: aiming, 
character movement, physicality, and device and settings. Only 6 
out of 13 conjectures were supported with statistically sufcient 
evidence. 
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1 INTRODUCTION 
In frst-person shooters (FPS), one of the most representative genres 
of e-sports, players require a high level of gaming combat skills to 
compete. Such skills include the ability to accurately shoot small, 
fast-moving enemies, incapacitate an enemy attack through un-
predictable movement, and create a more manageable shooting 
situation in the game than the enemy. These skills are not easily 
acquired through short-term exercises and thus have been regarded 
as part of successful FPS players’ core competitiveness. Professional 
FPS players have overwhelming gaming combat skills compared 
to amateur players. In gaming communities worldwide, these pro-
fessional players are often called Gosu, a Korean term meaning a 
highly skilled person, and they are revered for their dominating 
performance. 

However, our understanding of FPS players’ gaming combat 
skills remains at initial level. Understanding the mechanisms 
through which professional FPS players can gain overwhelming 
gaming combat skills is an essential issue in e-sports science. It 
enables more credible player training and player trading, and as a 
result, like traditional sports, e-sports can be taken seriously. Typi-
cally, the gaming physical combat skills of FPS players have primar-
ily been measured using in-game statistics, such as the kill/death 
ratio or average damage per game. Such aggregated metrics only 
confrm the consequential and straightforward fact that a particular 
player is superior to other players and cannot tell us how the player 
performs better. 

Various online communities have speculated on the secrets be-
hind the performance of professional FPS players. Typically, the 
conjectures include how professional players aim, move, or what 
type of devices to use. More specifcally, one conjecture states that 
fring a weapon with a single or short burst of controlled clicks 
(called tapping) or aiming a target with the arm instead of the 
wrist is efective for higher performance. Another conjecture is that 
a player should make unpredictable movements, combined with 
jumping and crouching. However, these conjectures have not been 
scientifcally verifed, and credible training guides for amateur play-
ers are virtually nonexistent. Consequently, amateur FPS players 
subjectively analyze professional players’ play videos and follow 
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such as Aim Hero,1 Aim Lab,2 and KovaaK 2.0,3 which have not 
proven efective. 

This study quantitatively compares professional and amateur FPS 
players’ performance to solve this problem and confrms whether 
famous conjectures on the web are correct. First, we selected conjec-
tures from sources such as the ofcial blogs of companies develop-
ing FPS related software and YouTube videos with least 100,000 to 
over 2,000,000 views. Then, we fltered those that can be commonly 
applied to general FPS games. We excluded those that depend on 
the game (e.g., “Hide behind the second box in that map”) or are 
difcult to quantify (e.g., “Do image training on shooting situation”). 
Table 1 summarizes the conjectures for the current study. Our goal 
is to verify these conjectures scientifcally and to fulfll the desired 
knowledge of amateur FPS players. 

To achieve the goal, we devised 15 quantitative performance met-
rics that compare professional and amateur players in the following 
four aspects of FPS play: aiming, character’s movement, physical 
skills, and device and settings. Furthermore, we built a comprehen-
sive gameplay logging system that can measure the proposed met-
rics in Counter Strike: Global Offensive (CS:GO), a popular 
commercial FPS game. The system can log data from six behav-
ioral sensors (i.e., eye tracker, motion capture, dual-sensor mouse, 
Wooting analog keyboard, heartbeat sensor, and an electromyo-
graphy (EMG) sensor) and data from in-game situations during 
gameplay. The timestamps between the sensors are synchronized 
with high accuracy and precision. 

We recruited eight professional FPS players and eight amateur 
players and measured their performance with our logging system 
as they played CS:GO. Each group played against another player 
within the same group to create a general gameplay situation. By 
analyzing the resulting data set with the proposed metrics, we 
revealed that only 6 out of 13 of the conjectures are supported by 
statistically signifcant evidence. Finally, the contributions of this 
study can be summarized as follows: 

• We surveyed conjectures on the web about FPS performance 
and summarized them into four specifc categories. 

• We developed an advanced gameplay logging system that 
can measure signals from six behavioral sensors and in-game 
situations with synchronized timestamps. 

• We present 15 quantitative performance metrics that can 
scientifcally evaluate the conjectures of FPS performance. 

• We verifed the conjectures on the web based on the proposed 
metrics. 

• We presented the collected dataset to the public for future 
research 4. 

2 RELATED WORK 
The quantitative evaluation of athletic performance is considered 
essential in all sports genres. It aids both in-game and out-of-game 
decision-making [9] for coaches, clubs, and athletes. It also provides 
clues to improve athletic performance on individual and team lev-
els [17]. Sports fans also are interested in such data interpretation. 

1 Aim Hero, ProGames Studio, 2016 
2Aim Lab, Statespace, 2018 
3KovaaK 2.0, The Meta, 2018 
4http://leebyungjoo.com/secrets-of-gosu 

Stoltz argued that, as the movement of sabermetrics in baseball 
expands, audiences who search for new baseball knowledge have 
increased correspondingly, creating a new era of baseball expe-
rience [46]. Other studies have found that the presentation and 
visualization of such data lead to a better understanding of the 
game and increase engagement and excitement concerning the 
game experience for sports and e-sports fans. [12, 16, 19, 23, 54]. 
For similar reasons, performance measurements and analyses in 
e-sports are crucial, particularly considering that the data generated 
from e-sports are comparable to even the most data-rich traditional 
sports, such as Formula One [12]. 

Moreover, e-sports can be classifed into several representative 
genres, such as Real-Time Strategy (RTS), Multiplayer Online Battle 
Arena (MOBA), and FPS games. Each of these genres usually has 
diferent quantitative metrics for player performance. For instance, 
MOBA games typically require active collaborations and efcient 
communication. As a result, statistics, such as kill death assist (KDA) 
per game or wards purchase (WA) per game, are often used for 
quantitative metrics. In addition, KDA is calculated as the addition 
of the number of kills and assists divided by the number of deaths, 
and WP measures the number of ward purchases. Moreover, RTS 
games demand a high level of multitasking abilities and use Actions 
Per Minute (APM) or Efective Actions Per Minute (EAPM) as the 
quantitative measurement of player performance, measured by 
the number of actions, such as keyboard inputs and mouse clicks, 
created by the player in a minute. 

However, an FPS game requires players to kill fast-moving ene-
mies. Therefore, they typically use quantitative measurements, such 
as the Kill/Death Ratio (KDR), Average Damage Per Game (ADG), 
or Headshot Percentage (HS%). KDR is measured by the number of 
kills over the number of deaths in a game and ADG is measured 
by the amount of damage to enemies in a game. HS% is measured 
by the percentage of headshots in a game. For the quantitative 
approach to an FPS game, several studies have suggested implicit 
measures that can represent a player’s skills that are not ofcially 
given from the game. In an FPS game called Red Eclipse, Buckley 
et al. [15] found that various keyboard input events, such as the 
average and the total number of keys pressed or the number of keys 
pressed at once, demonstrated a higher prediction of skill level than 
mouse input events, such as the number of clicks. Other studies on 
keyboard and mouse input have also shown that measurements, 
such as the time spent holding a specifc key or the total mouse 
distance moved, can also explain the skills of an FPS player [14, 45]. 
To characterize the skill level of players in CS:GO, Velichkovsky et 
al. employed eye gaze data, especially the analysis of the fxation 
duration on the computer screen [48]. They found that professional 
players generated higher frequencies of a longer fxation duration 
than amateur players. 

Beyond the proposal of measurements on single behavioral data, 
some researchers have proposed a particular system that can moni-
tor and measure player behavior and in-game data in an integrated 
way in an FPS game. In CS:GO, Korotin et al. [27] proposed a system 
that can comprehensively measure the player’s gaze, keyboard in-
put, mouse input, heart rate, and in-game data. Stepanov et al. [45] 
extended the previous system by adding a few more sensors, includ-
ing galvanic skin response sensor, EMG, and inertial measurement 
unit sensor. They proposed a technique to maintain synchronization 

https://4http://leebyungjoo.com/secrets-of-gosu
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Table 1: Summary of conjectures from gaming communities. 

Conjectures Performance Metrics 
Aiming 
A-1 “When track aiming, keep the crosshairs on the target at all times.” [4, 22, 24] Enemy-crosshair stickiness 
A-2 “When ficking (snapping) aim, quickly and accurately hit 

a moving target before they can react.” [4, 24] Angular velocity of the mouse 

A-3 “Move your mouse in the opposite direction of each weapon’s spray 
or recoil pattern. This compensates for the kicks during shooting.” [2, 3] 

Amplitude of the recoil compensating movement 
Duration of shooting 
(tapping vs. spraying) 

A-4 “Most professional players have their own sensitivity.” [24, 47] Force inefciency 

Character Movement 
M-1 “Be unpredictable. Make random moves.” [3] Entropy of pressed keys 
M-2 “Make your special movement combinations: 

Sidestep, Strafe shooting, Jumping, Crouching.” [2, 3] Frequency of movement combinations 
M-3 “Don’t reload habitually. Know the right time to reload.” [13] Reload efciency 
Physical Skills 
P-1 “Most professional players use arm aiming.” [5] Rotation ratio of elbow and wrist 
P-2 “Let loose of your arm and wrist, especially during aiming.” [6] Muscle activity 

P-3 “Scan all surroundings continuously.” [6, 44] Duration of fxation 
Number of saccades 

P-4 “Stay calm and have a composure.” [6] Composure 
Device and Settings 
D-1 “Most professional players use low sensitivity.” [22, 47] Used area of the mousepad 
D-2 “To minimize the stress of a player’s wrist, place a keyboard perpendicular.” [53] Keyboard perpendicularity 

between sensors within 10 ms of temporal accuracy. However, the 
contributions of these studies focused on designing a measurement 
system. 

Some studies aimed to analyze the skills of FPS players qualita-
tively. From a video analysis of gameplays, Reeves et al. found that 
expert FPS players tend to deceive their positions and take clever 
sidesteps to make it difcult for the opponent to shoot or frequently 
sit while shooting to increase shooting accuracy [40]. Fanfarelli 
[20] interviewed professional players from Overwatch, a popular 
FPS game, to identify the critical elements of FPS skills, as follows: 
survival, anticipation/prediction, communication, thoughtfulness, 
aim, ability usage, movement and positioning, and team-based me-
chanical synergy. In addition, Fanfarelli mentioned that most game 
genres require these elements, but especially in FPS, the mechanics 
covering the aiming ability are considered essential for expertise 
in FPS play. Witkowski [50] emphasized the kinesthetic ability 
in e-sports through a qualitative study that interviewed Counter-
Strike players and organizers at the three e-sports tournaments: 
2009 The eXperience, 2009 DreanHack Winter, and 2010 World Cyber 
Games. 

To summarize, many previous studies have analyzed diferent 
genres of e-sports from diverse perspectives. Among the various 
genres, the FPS has frequently been used as the research subject 
due to its versatile and dynamic environment. However, many 
research questions from previous studies are diferent from what 
actual gamers want to know. In this study, we aim to bridge the gap 
between the researchers and gamers by validating conjectures from 
online gaming communities. Our fndings present a greater external 
validity than previous studies by analyzing a comprehensive dataset 

collected from the gameplay between professional and amateur FPS 
players. 

3 GAME PLAY LOGGING SYSTEM 
To verify the conjectures in Table 1, we experimented with an un-
controlled FPS game playing situation to collect realistic gameplay 
data from players. We chose CS:GO for the FPS gameplay because 
of its global popularity and abundant open sources. We aimed to 
record various types of physical performance of the players during 
an actual gameplay situation. To this end, we developed a gameplay 
logging system consisting of six external sensors and an in-game 
data logger. In this section, we describe the implementation of the 
logging system. In the system, the six external sensors collect user 
behavioral data, and the in-game logger exploited the internal game 
parameters through a Dynamic Link Library (DLL)-injection attack 
(Figure 1). 

3.1 Behavioral Data 
We devised the loggerslate to begin or halt the logging process by 
sending a User Datagram Protocol (UDP) packet to all six external 
sensors simultaneously. When we turn on the system, loggerslate 
sends a wake signal to the local-time stamper, motion-capture sen-
sor, and analog input keyboard, and the three systems record the 
epoch time obtained from the system clock of the Operating System 
(OS). To reduce the operational burden on the OS and minimize the 
asynchrony between the timestamps of each sensor, the four sen-
sors (dual-sensor mouse, eye tracker, EMG sensor, and pulse sensor) 
receive the local time from the local-time stamper and record the 
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Figure 1: Gameplay logging system: The system collects a comprehensive dataset of six behavioral and in-game data. The 
motion-capture sensor and analog input keyboard receive epoch times from the operating system (OS) periodically. The dual-
sensor mouse, eye tracker, electromyography (EMG) sensor, and pulse sensor receive global timestamps by adding the period-
ical local time to the one-of epoch time. The in-game logger receives a performance counter as the local time. The collected 
data were synchronized using a unifed time-keeping mechanism. 

local time using a diferent frequency for each sensor. The local time 
is set to zero when the local-time stamper receives the wake signal 
from the loggerslate, and the resolution of the local time is 1 ms. The 
global timestamps of the four sensors are acquired by adding the 
local time to the epoch time recorded when the local-time stamper 
frst receives the wake signal. 

3.1.1 Dual-sensor mouse. We fabricated a mouse device for our 
study by adopting a dual-sensor mouse [26]. We collected the length, 
width, and height of the mice used by 255 professional players from 
prosettings.net [7] and designed a mouse according to the average 
size. The resulting dimensions resemble the Logitech G Pro Wireless 
mouse. The dual sensors of the mouse allow measuring the rotation 
angle and clutching duration of the mouse. We can also control 
the virtual sensor position using the two static optical sensors, but 
the virtual sensor position was fxed at the center of the mouse 
in this study. The device polling rate was set at 500 Hz, and the 
sensor resolution was set to 12k dots per inch (dpi) internally and 
was downsampled to a user-defned dpi. The dual-sensor mouse 
data include a timestamp in milliseconds and microseconds, dx and 
dy of the front and rear sensors in counts, dx and dy of the cursor 
in pixels (px), and button states, such as left or right clicks. The 
rotation angle and clutching duration were calculated from these 
data afterward. 

3.1.2 Analog input keyboard. We used a Wooting One analog input 
keyboard, which can detect can detect the gradual movement of 
each key like a joystick, which enables logging how far the user 
presses down. It is connected via a universal serial bus (USB), and 
the data were logged through the Wooting Keyboard Library [43]. 
The analog input keyboard data include a timestamp in milliseconds, 
the pressed key, and pressed depth of the key as an integer with 
the range from 0 to 231. 

3.1.3 Motion-capture sensor. We used the OptiTrack three dimen-
sional (3D) position tracking system for real-time position tracking 
of the objects attached with specialized refective markers. Our 
system consists of eight high-speed tracking cameras and the 

motion-capture software MOTIVE. OptiTrack cameras were con-
nected using Cat 6 Ethernet connections to the OptiTrack switch for 
data consolidation and power distribution. The switch sends UDP 
packets with the position and orientation data for each marker. The 
resolution of the marker displacement is accurate to 1-mm under a 
sampling rate of 240 Hz. The data of the motion-capture sensors in-
cludes the timestamp in milliseconds; frame number; marker ID in 
integers; x ,y, z coordinates; and marker diameter. When the marker 
is added, ID; x ,y, z coordinates; and diameter for each marker are 
added to the data column. 

3.1.4 Eye tracker. We used the SMI REDn Scientifc System, with 
iViewRED software as a monitor-mounted eye-tracking system 
in this work. The eye tracker requires a calibration process for 
each user to establish the relationship between the eye position 
in the camera view and the gaze point in space. We performed a 
fve-point calibration each time we started logging. The eye tracker 
data include the timestamp in milliseconds, x , y coordinates of both 
the left and right eye staring at the gaze point, and the diameter of 
each pupil. 

3.1.5 EMG sensor. We also used the MYO armband consisting of 
eight EMG sensors and nine axis IMUs. The MYO armband was 
worn on the forearm below the elbow. The intuitive sensor logging 
system receives data from the MYO armband via Bluetooth 4.0. The 
sampling frequencies are 50 Hz for the IMU and 200 Hz for the 
EMG. The data from the MYO armband include the timestamp in 
milliseconds and data from the eight EMG sensors. From the IMU, 
the orientation (row, pitch, and yaw) data in radians, three-axis 
accelerometer data in G, and gyroscope data in G are logged. The 
operating and calibration status and whether the band is worn on 
the left or right arm were also recorded. 

3.1.6 Pulse sensor. We used a Grove ear-clip heart-rate sensor 
attached to an Arduino UNO. The ear-clip contains an optical sensor 
to monitor the heart rate of users at 500 Hz. The pulse sensor data 
include the timestamp in milliseconds, beats per minute (BPM), 
inter beat interval (IBI), and signal (SIG). 

https://prosettings.net
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Figure 2: Experimental setup of the gameplay logging system: Box 1 shows the desktop setup of eight motion-capture cameras. 
Boxes 2 and 3 are the positions of the refective markers and MYO armband. Boxes 4 and 5 are the dual-sensor mouse and two 
sensor positions. The ear-clip type pulse sensor was attached to the player’s right earlobe (not pictured). 

3.2 In-Game Data 
We devised an in-game data logger to obtain detailed in-game data, 
such as character location, fred weapons, health, and more. We 
modifed Osiris [18], an open-source pure C++ CS:GO internal cheat 
by DLL injection to extract the data from memory. We used the 
epoch time as the timestamp for the in-game data to synchronize 
the time with other sensors. First, when the system starts to work, 
the system records the start time (the local time of the machine) in 
epoch time using the GetSystemTimeAsFileTime. Then, we used a 
hardware performance counter to measure the elapsed time more 
precisely. The counter has a high resolution and can be used as 
an accurate timer. The fnal timestamp was calculated by adding 
QueryPerformanceFrequency divided by QueryPerformanceCounter 
to the start time. 

3.2.1 Player data. To collect the player data coordinated with the 
player’s viewpoint, we employed the paintTraverse function from 
the CS:GO game engine, which iterates over entities in the game. 
We added a logger hooked into paintTraverse function because 
every entity will be already drawn to the screen before the paint-
Traverse is called. As paintTraverse is called by the game engine 
every frame, the logger collects the player’s data listed below by 
iterating all of the entities existing in the interface. We logged four 
player data items: player information, the current 3D position of 
the player, and the enemy player’s skeletal position and visibil-
ity. Player information includes the players and their opponents’ 
names and health points between 0 and 100. The current player’s 
3D position includes the x, y, and z 3D coordinates. The opponents’ 
skeletal data include the x and y 2D coordinates based on the screen 
resolution (1920 x 1080). Because we only need the general shape of 
a character’s body, the logger records 19 positions out of 85: seven 
bones from the spine (from the head to the pelvis), six bones for 
the left and right arms (three bones each), and six bones for the left 

the visibility of the enemy player’s skeletal position based on the 
current player’s viewpoint, where 0 is invisible, and 1 is visible. 

3.2.2 Game events. The game engine generates events for broad-
casting various character actions. By placing the event listener for 
specifc target events, the logger can manage these events and logs 
as the events arise. We logged six items for game events: player 
death, weapon fre, weapon reload, weapon zoom, player spawn, 
and player jump. When each event occurs, the name of the player 
who generates the event is logged. When a player death event oc-
curs, the dead player’s name and whether it was a headshot are 
also logged. 

3.2.3 Output format. The logger saves these data into CSV format. 
The rows contain a timestamp and either player data or game events. 
For player data, the timestamp, current player’s name, health points, 
weapon type, and 3D position are shown frst. Then, the enemy’s 
name, health point, and each of the 19 2D skeletal positions with 
visibility status are shown. 

4 DATA ACQUISITION 
With the developed logging system, 16 FPS players (eight amateurs 
and eight professionals) participated in the data collection. Each 
player performed a 30-minute gameplay session against another 
player within the same expertise group while collecting data. 

4.1 Participants 
According to their performance level, we recruited 16 participants 
from the following two groups: a professional player group and 
an amateur player group. For the professional player group, eight 
professional FPS players of Rainbow Six Siege5 participated, be-
cause it was difcult to recruit CS:GO professional players in the 
area where the study was conducted. Instead, we confrmed that 

and right legs (three bones each). The enemy’s skeletal data include 5Tom Clancy’s Rainbow Six Siege, Ubisoft, 2015 
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Figure 3: Map overview used for one-on-one gameplay. 

they have universal professional skills that can be commonly ap-
plied to diferent types of FPS games. In a preliminary survey, 
the participants in the professional group replied that they were 
also performing best in Overwatch and PUBG (e.g., grandmasters 
(top 1%) in Overwatch or listed in the top 100 places in PUBG as a 
solo). 

For the amateur player group, eight players from a local uni-
versity who recreationally play FPS games participated. During 
recruitment, we fltered only those who had sufcient FPS experi-
ence using their usual FPS rank; For instance, among those who 
play Overwatch, we only recruited those who have a higher rank 
than the gold rank (top 71%). 

The average amount of FPS playing time per week was 47 hours 
(SD = 12.97) for the professional player group and 9.13 hours (SD = 
5.77) for the amateur player group. The average age of the partic-
ipants was 22.75 years old (SD = 3.37) for the professional player 
group and 23.5 years old (SD = 3.38) for the amateur player group. 
All participants were male and right-handed, and none had previous 
experience playing CS:GO. 

4.2 Task 
Each participant played a one-on-one match against an opponent 
player for 30 minutes. The opponent player was selected within 
the same group to replicate the real-world play environment and 
maintain the gameplay comptetitiveness. In a typical FPS game, 
players are automatically assigned to other players with a similar 
performance level. The goal of the task was to kill the opponent as 
many times as possible, using only the designated weapons. The 
participants were in terrorist group and used a assault rife (the 
AK-47) for the frst 20 minutes and used a sniper rife (the AWP) 
for the remaining 10 minutes, while the opponent used a assault 
rife (M4A4) for 30 minutes. The map used for gameplay was a 
conventional workshop map called aim_map6 which is used for 
one-on-one play. The map did not include specifc missions, such 
as bomb planting or rescuing hostages, to keep the goal as simple 
as possible. The overview of the map is depicted in Figure 3. 

4.3 Apparatus 
The gameplay logging system we described in Section 3.1 was 
implemented on a Windows desktop computer (64-bit Windows 
10 Pro, Intel Core i7-9800X CPU @ 3.80 GHz, 16 GB RAM with 
NVIDIA GeForce GTX 2080 Ti). We used an Alienware 27 gaming 
monitor with a native resolution of 1920 x 1080 at 240 Hz. The 
mousepad was a SteelSeries QcK heavy model measuring 450 mm 
x 400 mm x 6 mm. 

6aim_map, CS:GO Workshop, FREIHH & leplubodeslapin, 2013 

4.4 Setup and Procedure 
The apparatus was installed on a regular desk. Eight motion-capture 
cameras were positioned around the desk to capture the 12 mark-
ers placed on the keyboard, mousepad, and participant’s body. We 
explain the specifc locations of the markers in Section 4.1.2 on 
motion-capture data labeling. The participants wore an MYO arm-
band on their right forearm without interfering with the motion-
capture markers. The eye tracker was placed on the bottom side of 
the monitor. For each participant, we properly adjusted the monitor 
height and angle to place the eyes within the tracking feld. We set 
the Windows mouse setting to 1000 dpi for all participants, and 
they adjusted the mouse sensitivity in the game if they desired. The 
entire experimental setup is illustrated in Figure 2. 

For the experiment, each participant was instructed to sit on 
a gaming chair in front of the experimental setup. Because the 
participants did not have any experience with CS:GO, we allowed 
15 minutes of practice to familiarize players with the game basics. 
During this period, each participant adjusted the in-game settings, 
such as the mouse sensitivity, if they desired. After practice, the 
participants wore the MYO armband and calibrated the sensor. The 
participants then put on seven markers on the designated positions 
and placed the pulse sensor on the right earlobe. Next, we adjusted 
the monitor height and angle to place the participant’s eyes within 
the eye tracker tracking feld. The calibration of the eye tracker was 
performed as the gameplay logging system was initiated. Before 
the actual gameplay, we asked the participants to stay calm and 
still for a minute to measure the their base states of pulse and MYO 
sensors. Once the base measurements were complete, the actual 
gameplay began, and the participants played the game for the next 
30 minutes. We collected 7.3 GB of data in total and 75.9 GB of 
high-resolution video recordings. 

5 DATA ANALYSIS 
We analyze the obtained dataset to verify the conjectures (Table 1). 
More specifcally, we propose quantitative metrics that can verify 
the conjectures, which are divided into four categories: aiming, 
character’s movement, physical skills, and device and settings (see 
Table 3). This section frst describes the preprocessing of the data, 
then explains in detail what the proposed metrics are, and explains 
the data analysis results based on those metrics. Note that the Mann-
Whitney U test was used to assess the statistical signifcance (p < 
0.05) as the data are not normally distributed. 

5.1 Data Preprocessing 
5.1.1 Time synchronization. Timestamp synchronization was per-
formed by compensating for the physical delays of the six sensors 
and the software delay of the in-game data logger. For the dual 
mouse, analog input keyboard, and pulse sensor, we measured 
the absolute duration from the physical input until the brightness 
change of the light-emitting diode (LED) or display. The duration 
was recorded using a high-speed camera, the Sony RX100 MK5, 
with a frame rate of 960 frames per second (FPS). We calculated the 
delay by measuring the time diference in the dual-sensor mouse 
data for the motion capture and EMG sensors. Moreover, we com-
pared the timestamp for each data point that a specifc event (e.g., 
the press of a mouse button) was simultaneously logged. Detailed 
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Table 2: Measured delay for time synchronization 

Dual 
Sensor 
Mouse 

Analog 
Input 

Keyboard 

Motion 
Capture 
Sensor 

Eye 
Tracker 

EMG 
Sensor 

In-Game 
Pulse 
Sensor 

Data 
Logger 

Dual Sensor Mouse 11.64 16.13 23.7 
Monitor 38.133 24.06 60.0 45.83 

methods for measuring the delay using each of the sensors with 
the dual-sensor mouse are explained below. 

(1) Dual-sensor mouse: When the user clicks the left mouse but-
ton, the display color switches from black to white or vice versa. We 
recorded the delay from the deepest click stroke until the brightness 
change using a high-speed camera. The average delay measured 
38.13 ms (SD = 5.832, N = 20). We evaluated the same number of 
tasks for the condition of black to white and white to black. 

(2) Analog input keyboard: When the user presses a key, the dis-
play color switches from black to white or vice versa. We recorded 
the delay from the deepest keystroke until the brightness change 
using a high-speed camera. The average delay measured 24.06 ms 
(SD = 4.07, N = 20). We evaluated the same number of tasks for the 
condition of black to white and white to black. 

(3) Motion-capture sensor: A marker was attached to the user’s 
right index fnger tip. Then, we recorded the marker’s z-axis value 
(orthogonal to the mouse pad) and the mouse click logs. We calcu-
lated the delay by comparing the timestamps of the moment when 
z was minimum in the motion-capture data and the moment when 
the button-press event was logged into the mouse data. The average 
delay measured 11.64 ms (SD = 14.77, N = 25). 

(4) Eye tracker: We recorded eye images on the iViewRED soft-
ware interface and the experimenter’s pupil movement in a scene 
with a high-speed camera. Then, we measured the delay from the 
pupil movement until the change in eye images. The average delay 
measured 60 ms (SD = 15.47, N = 20). 

(5) Electromyography sensor: The user wearing an MYO arm-
band dragged the mouse quickly in the vertical direction from the 
direction in which the user was sitting. Since the MYO armband 
contains an IMU sensor, we could compare the timestamps when 
each sensor’s acceleration is 0. The average delay of the IMU sensor 
from the mouse sensor measured 16.13 ms (SD = 15.57, N = 23). 

(6) Pulse sensor: The pulse sensor contains an optical sensor 
for a heart-rate monitor. When the sensor detects light, it changes 
the signal value provided by the pulse sensor. We placed a pulse 
sensor attached to an LED light source into a dark box. Then, we 
measured the delay from turning the LED on until the brightness 
change using a high-speed camera. The average delay measured 
45.83 ms (SD = 3.423, N = 5). 

(7) In-game data: We compared the timestamps when the weapon 
fre event was logged in the in-game data and the moment when the 
left button-press event was logged in the mouse data. We performed 
a delay test for 20 shots to compare the delay between the mouse 
and in-game data with all connected sensors. The average delay 
was 23.7 ms (SD = 9.12, N = 20). 

5.1.2 Motion-capture data labeling. We used 12 markers in this 
experiment, as depicted in Figure 4. (b): two markers on the top 

side of the keyboard (4 and 8), two markers on the left hand (5) 
and wrist (6), three markers on the index fnger of the right hand 
(9, 10, and 11), two markers on the right wrist and the elbow (12 
and 7), and three markers attached to each corner of the mouse 
pad (1, 2, and 3), except for the lower left part to avoid interfering 
with the player’s arm movement. We labeled the markers based on 
their size and location for each frame during the game. We put the 
largest markers (1, 2, 3, 4, and 8) on the keyboard and mouse pad, 
and the medium-sized markers (5, 6, 7, and 12) on the left hand, 
right wrist, and right elbow. The smallest three markers (9, 10, and 
11) were attached to the right index fnger. We frst classifed the 
two left-most two of the largest markers as keyboard markers (4 
and 8), and the three right-most markers as mouse pad markers 
(1, 2, and 3). The two medium-sized markers on the left half were 
labeled with the left wrist and hand (6 and 5) in order by proximity 
to the body. Finally, the medium and smallest markers on the right 
half were labeled with the right elbow, wrist, and index fnger in 
order by proximity to the body. We only labeled frames with all 12 
markers present and the frames during the gameplay. 

5.1.3 Electromyography data normalization and filtering. The sig-
nal from the MYO band contains noise and may appear diferently 
depending on various factors, such as the participant’s hair, fatty 
tissue, or sweat [1]. Hence, we performed two types of preprocess-
ing, which are common operations conducted before analyzing 
the EMG data: normalizing and fltering [11]. First, we normalized 
the data from the eight sensors to a range from -1 to 1. Then, the 
Gaussian kernel flter (siдma=3) was used to remove the noise. 

5.1.4 Classification of combat process. Regarding submovement 
segmentation, according to the adaptive model theory, all voluntary 
continuous movements performed by a human, such as a tracking 
task, comprise a concatenated sequence of submovements [37]. In 
our study, we used a mouse speed profle to segment the player 
movement into submovements. The speed profle was obtained 
in units of pixels per milliseconds by dividing the cursor dx and 
dy by dt . Because noise generated from sensing hardware reduces 
the accuracy or precision of a signal, we used a Gaussian kernel 
fler (σ =3) to reduce the noise. As the local minimum point of the 
speed profle is considered the boundary separating submovements, 
we used the findpeaks function of MATLAB to determine the local 
maximum points of the inverted speed function. Then, we found 
the last minimum point right before the shooting as presented in 
Figure 4. (a). 

Regarding shooting, during gameplay, a player typically repeats 
a sequence of actions, including shooting a weapon. Using the 
weapon fre events, we grouped a sequence of fring events into 
one shooting chunk if the interval between the weapon fre events 
is shorter than 1000ms. When we plotted the histogram of the 
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Figure 4: (a) Classifcation of the last submovement and shooting chunk from the combat process and (b) marker locations 
from the captured motion data 

intervals between ’weapon fre’ events, we found out that most 
were distributed within 1000 ms. Thus, we empirically chose the 
time window to 1000 ms. If the interval is longer than 1000ms, we 
defned it as an event in the subsequent shooting chunk. 

5.2 Descriptive Statistics 
We logged the data from 1097 rounds of the game, and the total 
playtime for 16 participants at 30 minutes each was 480 minutes. 
During the 30 minutes, the number of efective shots generated by 
the professional players was 158.63 (SD = 14.52) on average, and 
was 142.44 (SD = 13.64) for the amateur players. Even with the 
same amount of time, professional players generated more efective 
shots than amateur players (p = 0.03). In addition, the two groups 
exhibited diferences in reaction time for shooting, which is the 
time interval from the enemy’s appearance to the frst shooting 
when using a sniper rife (p = 0.02). The average reaction times for 
the professional and amateur groups were 459.54 ms and 504.36 ms, 
respectively. When using the assault rife, no signifcant diference 
was found in the reaction time between the two groups. 

The two groups did not exhibit any signifcant diference in KDR 
because the opponent player was selected within the group to repli-
cate the real-world play environment. For example, in Overwatch, 
the average KDR of the top 50 players in the Grandmaster tier is 
2.72 (SD = 0.44), and the average KDR of the top 50 in the plat-
inum tier is 2.65 (SD = 0.55), which is not signifcantly diferent 
[8]. In our experiment, the average KDR was 1.47 (SD = 0.92) for 
the professional player and 1.14 (SD = 0.79) for the amateur player 
group. 

5.3 Metrics on Aiming 
Regarding the aiming skills of FPS players, this study proposes fve 
general metrics: (1) enemy-crosshair stickiness, (2) angular velocity 
of the mouse, (3) amplitude of the recoil compensating movement, 
(4) duration of shooting, and (5) force inefciency. This section 
describes each metric in detail and presents the analysis results of 
each metric. 

5.3.1 Enemy-Crosshair Stickiness. Tracking is an aiming style that 
keeps the enemy’s position in the middle of the crosshair. It is one 
of the skills used with guns that are fred continuously, such as the 
AK-47 of M4-A4. It becomes easier to shoot the enemy quickly and 
consistently with a closer distance between the enemy’s location 
and the player’s crosshair. To compare players’ tracking perfor-
mance, we calculated the average distance between the center of 
the player’s crosshair and the enemy’s head and body location. 

5.3.2 Angular Velocity of Mouse. The ficking aim is another aim-
ing style that snaps the wrist to move the crosshair to the enemy’s 
position. If the enemy is moving erratically, it is difcult to accu-
rately follow their position with tracking aim. Hence, the player 
must quickly move the crosshair and hit the moving target before 
the opponent can react. In general, as the plan for how to click 
on the target occurs in the last submovement [38], we assumed 
that the plan for how to shoot the opponent and how to move the 
mouse or crosshair for the shooting would also take place in the 
last submovement. We calculated the average angular velocity of 
the mouse (ωmouse ) during the last submovement to measure the 
degree of wrist snapping, which can be calculated as follows: 

dθ dXf ront − dXr ear 
ωmouse = = d( )/dt 

dt rmouse 

where dXf ront and dXr ear are the dx logged from the front and 
rear sensors of the mouse. In addition, rmouse is the distance be-
tween the two sensors, 72 mm in our experiment [26]. 

5.3.3 Amplitude of the recoil compensating movement. In general, 
most assault rifes used in FPS games have recoil, and some guns 
have their own patterns. However, for most guns, the muzzle moves 
upwards if a player keeps fring, similar to the movement in a 
realistic situation. Therefore, some have conjectured that players 
must move the mouse in the opposite direction of the weapon’s 
recoil to compensate for the kicks during shooting. To compare the 
amplitude of the recoil compensating movement, we measured the 
average dy of the mouse during shooting. 
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Table 3: Mean, standard deviation, and statistical signifcance of the two groups. The Mann-Whitney U test was used to test 
the statistical signifcance at the 5% level. 

Metrics Professional Amateur M.W. stat 
M SD M SD U p 

Descriptive Statistics 
Number of efective shots per minute 5.29 0.48 4.75 0.45 14 0.03 • 
Reaction time of shooting − Assault rife (ms) 426.77 30.96 451.26 49.30 21 0.14 
Reaction time of shooting − Sniper rife (ms) 459.54 29.10 504.36 45.15 12 0.02 • 
Aiming 

A-1 
Enemy-crosshair stickiness − Assault rife & shooting (px) 22.56 5.98 16.19 4.49 11 0.02 • 
Enemy-crosshair stickiness − Assault rife & no shooting (px) 64.89 25.01 72.06 28.09 28 0.36 

A-2 

Angular velocity of mouse − Assault rife (radian/ms) 0.03 0.02 0.01 0.01 8 0.01 • 
Angular velocity of mouse − Sniper rife (radian/ms) 0.05 0.02 0.03 0.02 13 0.03 • 
Angular velocity of mouse ∗ sensitivity − Assault rife 0.03 0.01 0.03 0.02 28 0.36 
Angular velocity of mouse ∗ sensitivity − Sniper rife 0.05 0.02 0.06 0.04 32 0.48 

A-3 
Amplitude of the recoil compensating movement − Assault rife (px) 190.81 162.31 62.48 62.50 11 0.02 • 
Duration of shooting (tapping and spraying) − Assault rife (ms) 232.12 81.65 145.02 53.73 12 0.02 • 

A-4 
Force inefciency − Assault rife 4.13 0.47 4.57 0.58 16 0.05 
Force inefciency − Sniper rife 2.73 0.09 2.97 0.28 8 <0.01 • 

Character Movement 
M-1 Entropy of pressed keys − Movement combination 1.51 0.12 1.63 0.29 15 0.04 • 

M-2 
The number of stuttering step pattern (ADA or DAD) 5547 4518 4873 7908 20 0.11 
The number of crouching pattern (A/S/D/W + Ctrl) 677 302 349 226 12 0.03 • 

M-3 
Reload efciency − Assault rife 7.61 1.33 7.33 2.68 31 0.48 
Reload efciency − Sniper rife 0.84 0.25 0.82 0.24 30 0.44 

Physical Skills 
P-1 Rotation ratio of elbow and wrist (elbow/wrist) 2.95 2.21 1.22 0.78 15 0.04 • 
P-2 Muscle activity 1.07 0.12 1.11 0.14 24 0.22 

P-3 

Duration of fxation − visible (ms) 713.71 264.99 482.40 220.89 16 0.05 
Duration of fxation − invisible (ms) 559.73 217.91 321.09 89.13 8 <0.01 • 
Number of saccades − visible (count/s) 2.51 0.25 2.52 0.68 23 0.19 
Number of saccades − invisible (count/s) 2.75 0.28 2.58 0.84 30 0.44 

P-4 
Composure − beats per minute (under30/over30) 0.99 0.02 1.01 0.03 23 0.19 
Composure − interbeat interval (under30/over30) 1.01 0.03 0.98 0.03 25 0.25 
Composure − pupil diameter (under30/over30) 1.01 0.04 1.02 0.02 29 0.40 

Device and Settings 
D-1 Used area of mousepad (cm2) 1479 845 473 604 7 0.01 • 
D-2 Keyboard perpendicularity (degree) 18.32 16.99 2.85 3.64 9 0.01 • 

5.3.4 Duration of shooting. There are two main methods exist 
to shoot a weapon: tapping and spraying. Tapping is a single or 
short burst of controlled weapon fre using discrete mouse clicks. 
In contrast, spraying is a stacked or a more extended period of 
weapon fre typically done by continuously pressing the mouse. To 
measure the two types of shooting, we calculated the average time 
intervals of individual mouse clicks. A single mouse click interval 
was measured to be the time between pressing and releasing the 
mouse. A shorter interval is closer to tapping, ans a longer interval 
is closer to spraying. 

5.3.5 Force ineficiency. In FPS games, the mouse sensitivity is a 
crucial factors that afects aiming. According to some conjectures, 
professional players have their own optimal mouse sensitivity, and 

amateur players have also tried to discover this. After the setting 
a specifc sensitivity, players practice learning movements that ft 
the sensitivity. Players who are well trained and accustomed to 
their sensitivity can move the mouse exactly where they desire at 
once. To measure how familiar the players are with their mouse 
sensitivity settings, we calculated the force inefciency by counting 
the number of the zero crossings in a mouse’s acceleration function 
[29] for 460.48 ms before shooting. We set the interval to 460.48 ms 
because the players fred the weapon 460.48 ms on average after 
the enemy appeared. 

5.3.6 Results. Unlike our expectations, when shooting and track-
ing the target (A-1), the average distance between the target’s head 
and player’s crosshair for professional players was farther than that 
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for the amateur players. The average distances for the professional 
and amateur players were 22.56 px and 16.19 px, respectively. Before 
shooting, both groups aimed at a similar distance from the target at 
64.89 px and 72.06 px. In this regard, by comparing the amplitude of 
the recoil compensation (A-3), we found that professional players 
tend to drag the mouse down more than amateur players during 
shooting. The professional and amateur players dragged the mouse 
down an average of 190.81 px and 62.48 px, respectively. We also 
found that professional players exhibit faster angular velocity (A-2) 
for both cases with assault rifes (0.03 rad/ms) and sniper rifes 
(0.05 rad/ms) compared to amateur players at 0.01 rad/ms for as-
sault rifes and 0.03 rad/ms for sniper rifes. However, the angular 
velocity multiplied by the mouse sensitivity for each player demon-
strated no signifcant diference. The professional players’ mouse 
movement was more efcient in terms of force efciency (A-5). The 
force inefciency of professional players is 2.73, which means that 
professional players changed the moving direction of the mouse 
less than amateur players at 2.97. In addition, the shooting duration 
was 190.81 ms and 62.48 ms for the professional and the amateur 
groups, respectively. The professional players displayed a relatively 
close duration to the spraying shooting. 

5.3.7 Discussion. Several interesting points were found in the 
results for aiming. First, contrary to the conjectures, the enemy-
crosshair stickiness during the shooting was shorter for amateur 
players, which is because professional players dragged the crosshair 
128.33 px farther down to compensate for gun recoil, whereas ama-
teur players did not. For nonshooting situations, where the recoil 
compensation is unnecessary, two groups did not exhibit a signif-
icant diference in the enemy-crosshair stickiness. In CS:GO, the 
center of the crosshair and the coordinates of the fred bullet are 
slightly diferent due to the recoil of the gun. Although we could 
not locate the exact trajectory of the fred bullets from the in-game 
data, the recoil makes the bullets spatter to higher positions than 
the crosshair center. Because this is a CS:GO game-dependent fea-
ture, further verifcation of the metric is needed using another 
game. 

Second, a signifcant diference in the angular mouse velocity 
was found between the two groups, which can be a clue concerning 
ficking aims. However, when we compensated for the mouse sen-
sitivity, the angular mouse velocity was not signifcant, as shown 
in the A-2 in Table 3. Therefore, the crosshair movement speed in 
the game was similar in both groups, but, in reality, professional 
players move the mouse with a higher angular speed than ama-
teur players. Professional players use a lower sensitivity because 
it allows the player to control movements more precisely. In other 
words, they can move the same distance with a higher resolution. 
In our experiment, this was verifed through professional players 
using a wider area of the mouse pad by 1006 cm2 than amateur 
players (D-1 in Table 3). 

Third, professional players demonstrated less force inefciency 
when using sniper rifes, which means that professional players 
switched the mouse direction less often than amateur players to 
aim at an enemy because they did not need corrective movements. 
Typically, players who are more trained and familiar with the mouse 
sensitivity can aim at the desired position at once without the 
corrective movements, because they tend not to undershoot or 

overshoot. From the results, professional players are more capable 
than amateur players in fnding suitable sensitivities. However, 
no signifcant diference was found when using the assault rife. 
In general, mouse sensitivity is considered more important when 
using a ficking aims, but assault rife usage requires more tracking 
aim than ficking aim. 

5.4 Metrics on Character’s Movement 
We proposes three metrics for the character’s movement: (1) entropy 
of combinations of keys, (2) frequency of movement combinations 
for accurate aiming, and (3) reload efciency. Details for each metric 
and results are provided below. 

5.4.1 Entropy of combinations of keys. In FPS games, neutraliz-
ing an enemy’s attack is just as important as killing an enemy. To 
do so, players must make dynamic and unpredictable movements 
employing various combinations of keys. To measure the random 
combinations of keys, we calculated the entropy based on com-
pression algorithms [36], a widely used approach in calculating the 
entropy of a symbolic sequence. The algorithm states that symbolic 
sequence entropy can be estimated by fnding the shortest mismatch 
in the sequence, which can be compressed without information 
loss. 

5.4.2 Frequency of movement combinations for accurate aiming. 
Moving while shooting signifcantly reduces aiming accuracy. 
Therefore, professional players often make stuttering idesteps, 
crouch, or walk right before shooting to stabilize the aiming. We 
measured two types of movement combinations for stabilizing the 
aiming suggested by the community: stuttering side steps and a 
crouching pattern while moving. For stuttering side steps, we mea-
sured the frequency of the key combinations A-D-A (left-right-left) 
or D-A-D (right-left-right). For crouching, we measured the fre-
quency of combinations of each movement keys (A, S, D, and W) 
and the crouching key (Ctrl). We counted the combinations of each 
movement from the shortest sequence patterns extracted from the 
Lempel-Ziv compression algorithm to obtain the two frequencies. 

5.4.3 Reload Eficiency. The gun magazine bullets are limited in 
FPS games so that the players must reload when the bullets runs 
out. Because players cannot shoot while loading, players are in a 
dangerous situation if they encounter an opponent while loading. 
The conjecture suggests that professional players do not reload 
habitually and know the right time to reload. To measure the reload 
efciency, we counted the number of bullets left when the player 
reloads. 

5.4.4 Results. Regarding the character movement, the two groups 
exhibited a signifcant diference in the entropy of the pressed keys 
(M-1) and the number of combinations that presses the crouching 
key right before shooting (M-2). The average entropy for profes-
sional players was 1.51, which means that the specifc movement 
combination pattern was repeated many times compared to the am-
ateur players (M = 1.63). The professional players used crouching 
combinations more often than amateur players (p = 0.03). Nev-
ertheless, the number of stuttering combinations and the reload 
efciency (M-3) exhibited no signifcant diference. 
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5.4.5 Discussion. In an FPS game, dodging the opponent’s bullets 
is as vital as aiming accurately. Therefore, many communities rec-
ommend moving randomly so that the opponent cannot anticipate 
the movements. According to the entropy calculation for the M-1 
conjecture, a lower entropy value indicates a higher compression 
rate for the key sequences, resulting from a higher repetition of 
specifc movement patterns. Thus, the lower entropy of the profes-
sional players means that their movements are more predictable 
than those of amateur players. In other words, more similar pat-
terns were observed in the movement sequence of the professional 
players. 

The analysis results of the frequency of movement combina-
tions for accurate aiming indicate that professional players tend to 
mix crouching in the middle of their movements more often (p = 
0.03), yet making a similar level of stuttering steps compared to the 
amateur players. Crouching right before shooting is a habit recom-
mended by many skillful players because it lowers the chance of a 
headshot from the opponent and, increases the player’s shootnig 
accuracy resulting in more efective shots. Moreover, more frequent 
generation of the same movement patterns, such as crouching be-
fore shooting, may explain the lower entropy of the professional 
players’ in the previous observation. 

5.5 Metrics on Physical Skills 
For the physical skills, we proposes four general metrics: (1) ro-
tation ratio of elbow and wrist, (2) arm electromyography (EMG) 
activity, (3) duration of fxation and the number of saccades, and (4) 
composure. Details for each metric and results are provided below. 

5.5.1 Rotation ratio of elbow and wrist. There are two primary 
methods exist to aim: arm and wrist aiming. Wrist aiming using 
delicate muscles allows the player to control the mouse more fnely. 
However, according to conjecture, most professional players pri-
marily use their arms to aim because, assuming the players use the 
same sensitivity, arm aiming is advantageous for quickly dragging 
the mouse to a distant location at once and puts less strain on the 
muscles. To measure the arm and wrist usage proportion, we calcu-
lated the elbow rotation angle (the horizontal vector of the desk to 
the lower arm) and wrist (lower arm to hand). Then, we compared 
the elbow and wrist rotation ratio by dividing the rotation angle of 
the wrist by elbow rotation angle. 

5.5.2 Arm Electromyography (EMG) Activity. The conjecture sug-
gests building muscle memory in the arm and wrist to aim precisely. 
Traditionally, the term ’muscle memory’ has been used by FPS play-
ers as a synonym for motor learning, which is the acquisition of 
motor skills to enhance performance [35]. We analyzed the EMG to 
measure the magnitude of muscle activation of the arm and wrist 
and compared the magnitude of muscle activation when shooting 
and not shooting. 

5.5.3 Duration of fixation and the number of saccades. Eye move-
ment tracking data are commonly used to measure the system 
usability [21] or user profciency [28]. Fixation and saccades are 
essential metrics for eye movement data analysis. Among several 
methods, we used a robust and highly accurate method, dispersion-
threshold identifcation (I-DT) [42], to separate and label the fxation 

and saccades. The I-DT method requires two thresholds: the dura-
tion and dispersion thresholds. Typically, the fxation duration is at 
least 100 ms; thus in the dispersion-based identifcation technique, 
the minimum duration threshold is set as 100 ms to 200 ms [49]. 
Regarding the dispersion threshold, if we know the distance from 
the eye to the screen, the dispersion threshold can be set to cover 
1/2◦ to 1◦ of the viewing angle [42]. In our experiment, the distance 
between the monitor and user was about 400 mm. Therefore, we 
set the duration threshold at 200 ms and the dispersion threshold as 
13.20 px (3.49 mm). We divided the situation into when the enemy 
was visible and invisible and calculated the fxation duration and 
the number of saccades. 

5.5.4 Composure. During the FPS play, it is essential to maintain 
composure. Especially in urgent situations, such as encountering an 
enemy, shooting at an enemy, or having low health points, a more 
composed player has a higher chance of survival. We calculated 
the player’s composure using three measurements, average heart-
beat, average inter-beat interval, and average pupil diameter. Each 
measurement was calculated for a specifc game situation, where 
a player’s health points were lower than 30. Because the sensor’s 
absolute magnitude for each participant varies, we calculated the 
sensor measurement ratio, with fewer than 30 health points and 
more than 30 over health points. 

5.5.5 Results. In the physical skills category, the elbow and wrist 
rotation ration exhibited a signifcant diference (p = 0.04). The 
professional players’ rotation ratio was 2.95, which demonstrates 
that the elbow rotation angle is about three times larger than that of 
the wrist. In contrast, the rotation ratio for amateur players wa 1.22, 
which means the amateur players used their wrists and arms in a 
similar proportions. When the enemy was invisible, the two groups 
demonstrated a signifcant diference in the fxation duration (p < 
0.01) at 559.73 ms for professional players and 321.09 ms for amateur 
players. The professional players had a 238.64 ms longer duration 
than the amateur players, but the number of saccades was similar. 
No signifcant diference was found for both the fxation duration 
and number of the saccades in the visible situation. 

The muscle activity of the lower arm (P-2) measured by the MYO 
band was not signifcantly diferent for shooting and non shooting 
situations. Moreover, they maintained a constant number of BPM, 
regardless of the number of health points remaining. Likewise, no 
signifcant diferences in the inter-beat interval and pupil diameter 
were found (P-4). 

5.5.6 Discussion. By comparing the elbow and wrist rotation ratio, 
we found that the professional players tend to use arm rotation 
more than wrist rotation when aiming, verifying the conjecture 
P-1. However, both groups had similar levels of muscle activation 
when shooting and not shooting. According to the fxation duration, 
professional players stared at a specifc position longer when the 
enemy was invisible. However, the conjecture recommends looking 
around as quickly and as much as possible, contrary to the fndings. 
For composure, we could not fnd any signifcant diference in the 
metrics. 

We summarize the following two reasons for such results: the 
small map size and the diferent experimental environment than the 
actual competition. First, the map in this experiment was small and 
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straightforward, so it was relatively easy to locate the opponent, 
which means that the player did not need to scan their surroundings 
diligently to fnd the enemy. 

In the post-experiment survey, some participants answered that 
it was easier to predict where the enemy would appear than in the 
actual game. In addition, because the experiment did not generate 
psychological pressure comparable to the real competition, we 
presume no fuctuations occurred in the players’ composure. 

5.6 Metrics on Device and Settings 
Regarding the metrics on device and settings, we proposes two met-
rics: (1) used area of mousepad and (2) keyboard perpendicularity. 
Details for each metric and results are provided below. 

5.6.1 Used Area of Mousepad. The DPI and in-game sensitivity are 
measurements of mouse sensitivity. Using low sensitivity means 
the player can move the same distance with a higher resolution 
when using the mouse in the game. Hence, low sensitivity ofers an 
advantage to accurate and precise aiming, and most professional 
players used low sensitivity. Because it is recommended to use the 
mouse pad widely with low sensitivity, we compare the square mea-
sure of the used mousepad area. The square measure was calculated 
using the maximum and minimum x and y values of the right index 
fnger tip. 

5.6.2 Keyboard Perpendicularity. It is inevitable to use the key-
board in the same posture for a long time when playing FPS games. 
However, the wrist fexion or extension angle and radial and ulnar 
deviation angle afect carpal tunnel pressure [41]. Several communi-
ties have advised placing the keyboard perpendicular to the player’s 
sitting direction due to stress on the wrist. We calculated an angle 
between the keyboard and the horizontal vector to the desk, which 
is assumed to be the player’s sitting direction. 

5.6.3 Results. The total used area of the mousepad (D-1) and the 
perpendicularity of the keyboard (D-2) displayed signifcant dif-
ferences between the two groups. The average sensitivity of the 
professional players was 0.91 (SD = 0.25) for a assault rife and 0.99 
(SD = 0.27) for a sniper rife. Amateur players set the sensitivity to 
2.03 (SD = 0.85) for a assault rife and 2.10 (SD = 0.27) for a sniper 
rife. These values were higher than those for the professional play-
ers. Professional players used an area of 1479 cm2 on average, and 
the amateur players used an area of 473 cm2. The keyboard of pro-
fessional players was placed at 18.32◦ from the horizontal direction 
of the desk, whereas the amateur players placed it at 2.85◦. 

5.6.4 Discussion. Most professional players used lower sensitivi-
ties than the amateur players, which also resulted in using a larger 
mousepad area, as indicated in the result for D-1. Therefore, we 
confrm the suggestions from many communities to lower the sen-
sitivity and use a larger mouse pad to increase aiming accuracy. 
The results also confrmed that professional players tend to use the 
keyboard at a larger angle. 

5.7 Post-Experiment Questionnaire 
In the post-experiment survey, participants answered questions 
asked about the commonalities and diferences between their usual 
FPS game and the experiment they conducted, and what they 

had considered most crucial to win the game. Both amateur and 
professional players responded that the aiming method was simi-
lar because the rifes used in the experiment are familiar. They 
also responded that the map structure and the presence of re-
coil on the rifes were similar to the actual game. In particular, 
5 out of 8 professional players mentioned that they had to re-
act quickly to the opponent’s movements like in the actual FPS 
game. For the diference, the two groups replied that the rifes in 
CS:GO had a greater recoil amplitude than the weapons in other 
games. Because of this feature, the players had to stop moving 
before shooting. In addition, professional players responded that it 
was awkward that they could not use their own equipment, such 
as a mouse or keyboard. Lastly, professional players pointed out 
the four most important strategies to win the game: adapting to 
mouse sensitivity, ficking accurately, predicting the opponent’s po-
sition, and compensating for the recoil. Among them, interestingly, 
adapting to mouse sensitivity and compensating the recoil were 
matched to the A-4 and A-3, which exhibited statistically signifcant 
diference. 

6 CONCLUSION AND LIMITATIONS 
This study quantitatively verifed and statically examine conjectures 
on FPS performance from online communities. We developed a 
comprehensive gameplay logging system and collected a dataset 
from professional and amateur players playing the commercial FPS 
CS:GO. We confrmed the conjectures A-3, A-4, M-2, P-1, D-1, and 
D-2 to be meaningful by analyzing the collected data. Although 
A-1, A-2, M-1, and P-3 were statistically signifcant, we withheld 
confrmation because they were either partially verifed or went 
against the conjectures. 

In more detail, the combat skills of professional players we found 
in the experiment can be summarized as follows: while shoot-
ing using a assault rife, professional players tended to lower the 
crosshairs downwards with a greater amplitude than amateur play-
ers did to compensate for recoil. Also, professional players showed 
lower force inefciency than amateur players when using sniper 
rifes. This means that professional players were more familiar with 
their sensitivity and needed less corrective movement to aim ac-
curately. By comparing the rotation ratio of the elbow against the 
wrist, we found out that professional players used more elbows than 
the wrist during aiming, and the professional players’ rotation ratio 
was higher than the amateurs’. For character movement, profes-
sional players showed a pattern of crouching just before shooting 
more frequently than amateur players. During the experiment, pro-
fessional players used a larger area of the mousepad than amateur 
players and placed the keyboard more vertically. 

This study also reveals two interesting points about the origin of 
the high performance of professional players. First, it seems that the 
combat strategy of professional players is largely determined by the 
settings of the game interface such as the input device [25, 26, 30, 32]. 
For example, looking at the results of the A-2 related metrics, the 
reason professional players move their mouse faster than regular 
players may simply be because they have a lower mouse sensitivity 
setting. Further research is needed on whether the behavior of 
professional players will signifcantly difer from those of amateur 
players even in the same interface setting. 
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Second, from the fact that professional players showed lower 
reaction times than amateur players during the gameplay, we can 
infer that the high performance of professional players may be 
due to their innate cognitive ability. This is related to the issue of 
whether there is a diference in innate talent among individuals 
that cannot be overcome by training in e-sports. This hypothesis 
could be tested in the future through controlled lab experiments 
using cognitive tasks related to FPS gameplay, such as pointing [34], 
choice-reaction [39], temporal pointing [33], and moving-target 
acquisition [31, 38] 

However, this study has some obvious limitations in terms of ex-
ternal validity and generalizability, which should be supplemented 
by further studies in the future. First, the players recruited in this 
study did not have the experience of playing CS:GO, the FPS game 
used in the experiment. Although we recruited players who are 
believed to have universal skills that can be applied to various FPS 
games and also gave them enough time to practice during the ex-
periment, this could have led to lower statistical power in this study, 
considering that professional players generally spend much longer 
training their main games. 

Second, due to the peculiarity of CS:GO, the FPS game used in 
this study, the fndings in this study may not be able to generalize to 
other FPS games. For example, as discussed earlier, the fact that the 
crosshair and bullet trajectory not being completely matched in the 
game can infuence the conjecture A-1. However, the performance 
metrics we have proposed do not depend on the type of FPS game, 
so if research on other FPS games based on the same metrics is 
carried out later, the limitation could be supplemented. 

The controlled experimental setup also presented several limi-
tations. First, professional players are typically keen about using 
their own equipment, such as the mouse and keyboard; however, 
we had to provide a special mouse and keyboard to log behavioral 
data. Second, although we used small motion-capture markers and 
ear-clip type pulse sensor instead of the fnger-clip type, the sensors 
may have afected to the participants’ movement. Third, gameplay’s 
restricted circumstances, such as a small map and one on one fght, 
only required simplistic movements. Fourth, the experiment in the 
lab could not generate sufcient immersion similar to real gameplay 
for the players to exhibit psychological changes, such as BPM or 
pupil diameter. Finally, this study did not fully consider the fact that 
many FPS games assume multiplayer settings. In a multiplayer set-
ting, a team’s success is afected not only by the individual player’s 
combat skills, but also by how well players communicate with each 
other [10, 51, 52]. In the future, a more generalized experiment 
addressing these limitations may increase the external validity. 
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